/caterwaul/Category/Functor/liftedDuoidal
Copy path to clipboardFor any rig category π, any π-valued functor category is a rig category in the same way by βliftingβ the rig structure of π.
Source
{-|
For any rig category π, any π-valued functor category is a rig category in the
same way by βliftingβ the rig structure of π.
-}
let cat = ../Cat/semigroupal
let vObject = Type
let Category = ../Kind cat
let DuoidalCategory = ../Duoidal/Kind cat
in Ξ»(cObject : Kind) β
let dObject = Type
in Ξ»(v : Category Type vObject) β
Ξ»(c : Category vObject cObject) β
Ξ»(d : DuoidalCategory vObject dObject) β
let base = ../Duoidal/extractCategory cat vObject
let object = cat.arrow cObject dObject
in { diamond =
{ unit =
Ξ»(x : cObject) β
../../Functor/Constant/Type
dObject
cObject
{ _1 = d.diamond.unit, _2 = x }
, product =
Ξ»(f : { _1 : object, _2 : object }) β
Ξ»(x : cObject) β
d.diamond.product { _1 = f._1 x, _2 = f._2 x }
}
, star =
{ unit =
Ξ»(x : cObject) β
../../Functor/Constant/Type
dObject
cObject
{ _1 = d.star.unit, _2 = x }
, product =
Ξ»(f : { _1 : object, _2 : object }) β
Ξ»(x : cObject) β
d.star.product { _1 = f._1 x, _2 = f._2 x }
}
}
β§ ./category cObject dObject v c (base dObject d)
: DuoidalCategory vObject object